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Differential mixing in a stratified fluid 
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We present an experimental and theoretical study of the effects of localized mixing 
on a stratified fluid contained in a reservoir. In  the experiments, mixing is 
accomplished by means of a vertically oscillating, horizontal grid located near the 
water surface at one end of the reservoir. Once the grid is set in motion, a mixed layer 
forms immediately beneath it. As this layer deepens, a horizontal pressure gradient 
builds up which drives an outflow of mixed fluid into the unmixed interior of the 
reservoir. This outflow slows, and eventually brings to a halt, mixed-layer deepening 
under the grid. At this equilibrium depth, the vertical velocity of the entrainment 
interface induced by the outflow exactly equals the velocity at which the entrainment 
interface would move downwards because of mixing. This equilibrium state persists 
until the outflow intrusion is blocked by the far wall of the reservoir, at which time 
deepening resumes under the grid. Asymptotically, the fluid reaches a state in which 
mixed-layer deepening is independent of position. 

1. Introduction 
In virtually all naturally occurring fluid mixing processes, the spatial distribution 

of the mixing action is non-uniform. However, previous studies of such processes 
have consistently used a local, vertical, one-dimensional approximation with no 
lateral communication between adjacent regions. Although this approach is a useful 
first step, as our needs become more specific, more complex physical processes must 
be included in predictive numerical models. 

To demonstrate the higher order of complexity inherent in spatially varying 
mixing, we start by considering two typical cases of general interest. In  the first, a 
barotropic tidal flow exists adjacent and parallel to a coastline. Models of this flow 
advanced by Simpson & Hunter (1974) or Maxworthy (1984) predict that  a front will 
form at that distance off the coast where tidal, turbulent kinetic energy can just 
completely mix the surface heat input and/or any pre-existing stratification. 
Hopfinger & Linden (1982) have studied this problem in the context of a one- 
dimensional budget of turbulent kinetic energy. The question however arises : what 
happens to this mixed fluid? Clearly, i t  must collapse into the adjacent, less well- 
mixed and hence stratified fluid, flowing as an intrusion at its level of neutral 
buoyancy. What effect does this flow have on the mixing process itself, and hence on 
the location of the front ? 

A related, and environmentally important case is that  of differential wind mixing 
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in a stratified lake or reservoir. As observed in several field studies on the Wellington 
Reservoir in Western Australia (see Imberger & Parker 1985), patchiness in the wind 
stress field due to the sheltering effects of surrounding hills leads to substantial 
horizontal variations in mixed-layer depth and temperature. The horizontal 
transport associated with collapse of these horizontal density gradients can dominate 
the exchange of fluid between the reservoir’s side arms and its main basin (Imberger 
1982). In  this case, since the winds are inherently unsteady, it is important to know 
the timescales of the collapse as well as the ways in which mixed-layer deepening is 
modified by spatial variations in forcing. 

Two other mixing processes which result in similar effects are boundary mixing, 
which has been examined by Ivey & Corcos (1982), and lake destratification by 
bubble plumes, studied by Kranenburg (1979). In  both of these experimental studies, 
localized mixing led to global changes in the densihy field, and eventually to the 
homogenization of the fluid. 

The processes described in the preceding examples can be reduced to somewhat 
simpler and more general terms. When a stratified fluid is mixed locally, horizontal 
density gradients and, hence, horizontal pressure gradients are created that drive a 
flow of mixed fluid away from the mixing region. Several experiments have 
investigated the flow resulting from a single mixing event, i.e. the situation where 
mixing occurs on a timescale much shorter than the time required for the fluid to 
respond (Wu 1969; Amen & Maxworthy 1980). When the mixing only lasts a short 
time, the volume of mixed fluid is fixed so that as the mixed region grows in 
horizontal extent, it contracts vertically. 

However, when mixing is maintained, the outflow persists for as long as the fluid 
in the mixing region is a t  a density different from that of the surrounding fluid. If the 
fluid were effectively infinite in horizontal extent, the mixing process could go on 
indefinitely with unmixed fluid being continually drawn into the mixing region. In  
contrast, if the fluid is bounded horizontally, the entire body of fluid must eventually 
become mixed. Thus, the tidal flow mentioned above would typify the case of a semi- 
infinite fluid, while the reservoir flow would typify that of a bounded fluid. 

In $2 of this paper we shall present a model of the mixing process that combines 
a simple model of an outflow intrusion with a simple model of one-dimensional 
deepening, one pertinent to the experimental study of differential deepening driven 
by an oscillating grid as presented in $$3-5. Although the model is based on the 
particular properties of grid-generated turbulence, the results can be generalized to 
include other types of turbulent mixing. 

2. Theory 
2.1. Introduction 

The response of a confined stratified fluid to localized mixing can be broken down 
into two main aspects: the process of turbulent entrainment across a density 
interface ; and the circulation response, i.e. the flow of fluid from the mixing region 
into the unmixed ambient fluid, plus any mean circulation in the body of the 
reservoir driven by the outflow. These processes have been considered separately in 
previous studies; in this section, we shall develop a theory of the fluid response also 
based on such an isolation of the processes. We shall assume that entrainment in the 
mixing region is always a vertical, one-dimensional process. One implication of this 
assumption is that we neglect any possible contribution to mixed-layer deepening 
made by shear across the interface due to the outflow from the mixed region. We also 
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assume that the outflow behaviour is determined solely by the vertical extent of the 
mixed region, and by the pressure gradient associated with horizontal density 
differences due to localized mixing ; any effects of the decaying turbulence exported 
from the mixed region will be neglected. 

Reviews of one-dimensional deepening of mixed layers in stratified fluids can be 
found in a number of references (e.g. Turner 1973; Sherman, Imberger & Corcos 
1978). For the purposes of this study, any of the several available models of the 
entrainment process can be used. The circulation response is somewhat more 
complicated than the entrainment process, however. Although the dynamics of 
viscous and inertial intrusions formed by inflows into linearly stratified ambients 
(Maxworthy 1972; Manins 1976; Imberger, Thompson & Fandry 1976) and of 
various types of two-layered gravity currents (Simpson 1982) are well understood, 
descriptions of the behaviour of these intrusive flows are usually most applicable to 
a flow a t  some distance from its source. The present case requires prediction of the 
flow rate based on the pressure gradient which develops due to differential mixing. 
In  the absence of detailed theories pertinent to the flows observed in our experiments, 
we shall use scaling analysis to  obtain two estimates of the dependence of the rate of 
outflow from the mixed region on the experimental parameters. This information 
about the outflow will then be used to describe the effect of spatial variability in the 
mixing rate on mixed-layer deepening. 

2.2. Deepening of a grid-stirred layer in a linearly strati.ed $uid 
2.2.1. One-dimensional deepening 

The basis of our model of differential deepening is the parameterization of Turner’s 
(1968) (see also Hopfinger & Toly 1976) grid-stirring experiments given in Denton & 
Wood (1982). For the limiting case of an infinite PBclet number, they find that 
Turner’s entrainment results can be accurately represented by the formula 

2 = 1.18u(h) (1  +0.41 Ri;)-’. (1) dt 

Here h is the depth of the mixed layer and u(h) the turbulent velocity scale a t  the 
location of the density interface (but measured in the absence of an interface, cf. 
Hopfinger & Toly 1976). The local Richardson number Ri is defined as 

Ri = g’Z,(h) U P ,  (2) 

where g‘ is the interfacial buoyancy jump, and l,(h) the turbulent lengthscale a t  the 
location of the interface. The turbulent length and velocity scales are evaluated using 
the experimental data of Hopfinger & Toly (1976) : 

and 

1, = C,h 

u = c, K h-1. 

(3) 

(4) 

In  terms of the amplitude of oscillation of the grid (stroke) S ,  frequency f ,  and mesh 
spacing M ,  

The constants C, and C, depend on the grid’s solidity, the shape of the bars, S ,  M and 
f ;  they have typically values (for S = 4 cm, M = 5 cm and f = 3 Hz) of 0.26 and 0.29 
respectively (Hopfinger & Linden 1982). The parameter K is known as the ‘grid 
action’ (e.g. Long 1978). 
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FIGURE 1. Definition sketch for (a)  one-dimensional mixed-layer deepening in a linearly stratified 
fluid ; ( b )  localized mixed-layer deepening in a semi-infinite linearly stratified fluid. 

To find h(t)  in the absence of outflow effects, the density profile must be specified. 
If the density initially varies linearly with height, and the geometry is as is sketched 
in figure 1 (a) ,  

so that ( 1 )  becomes 

g' = h, (6) 

= (1 .18C2Kh-')  (1+C,h6y-6) -1 ,  ( 7 )  

= K ~ N - : ,  (8) 

dh 
dt 
- 

where the scale length y t  is defined by 

and C, = 0.15C@;3 = 0.82. Equation ( 7 )  can be recast in terms of the dimensionless 
variables 7 = (hy-') and 7 = N t ,  yielding 

_ -  d5' - 0 . 3 4 ( ~ + 0 . 8 2 ~ ~ ) - ~ ,  
dr  

which when integrated, assuming that ~ ( 0 )  = 0, yields 

y2+0.215'* = 0.687. 

(9) 

t y is the distance over which turbulent diffusion with eddy diffusivity K would diffuse any 
property in one buoyancy period (i.e. in a time interval of length IT1). 
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Hence two asymptotic laws arise: 

9 x 0.873, 7 < 1, ( 1 1 )  

and 7 x 1.1578, 7 9 1. (12) 

The short-time asymptotic law describes the deepening that takes place before the 
stratification can affect the deepening process (Turner 1973). The exponent in (12), 
the long-time deepening law, is determined mainly by the decay law, (4), and by the 
Rip$ term in ( 1 ) ;  it differs only slightly from the exponents given by Long (1978) 
(i) and Linden (1975) (&). The transition from the rate given by ( 1 1 )  to the much 
slower rate given by (10) occurs a t  7 x 1.3. 

Equations ( 1  1 )  and (12) are based on the simplifying assumption that the virtual 
origin (Hopfinger & Toly 1976) of the turbulence decay law coincides with the plane 
of the grid, and that the plane of the grid is much closer to the upper surface than 
it is to the entrainment interface. These assumptions should have little effect on the 
accuracy of the long-term deepening law (12). The short-term law (11)  is correct 
provided that h is defined as the distance from the virtual origin (approximately 
1 cm behind the grid). More accurate predictions of the transition could be obtained 
by including both effects, but this would complicate the algebra and add little of 
value. 

2.2.2. Diflerential deepening in a semi-inJinite j u i d  

Next, suppose that the grid is of some finite length L,, and sits a t  one end of a fluid 
of semi-infinite horizontal extent (figure 1 b) .  As before, the grid is set in motion at  
t = 0. Experiments on mixed-layer collapse and intrusions (for example, Wu 1969) 
have shown that the initial collapse of a mixed region into a stratified fluid takes 
place in a time T,, approximately equal to one buoyancy period, i.e. 

T, = 2xN-l .  (13) 

For times much shorter than T,, deepening will be one-dimensional because the 
buoyancy forces involved in the collapse process itself require a time of T, to set the 
fluid in motion. Thus, the mixed-layer depth will initially satisfy (11) (with the same 
provisos as above). 

As the layer deepens, a pressure difference P - pN2h2 will develop, eventually 
forcing mixed fluid out of the mixing region a t  its level of neutral buoyancy. If we 
assume that an inertia-buoyancy balance must prevail a t  the edge of the mixing 
region, the volume flux out of the mixed layer, Qout, will be of the form (Manins 
1976) 

This parameterization of Qout will only be valid if turbulent shear stresses are much 
smaller than inertial forces ; this requires 

where vt is an appropriate 'eddy' viscosity, and Tout is the timescale characterizing 
establishment of the outflow (e.g. Batchelor 1967). Since the pressure imbalance 
initially existing across the vertical boundary between the mixing region and the rest 
of the fluid must be transmitted to the rest of the mixing region by the propagation 
of internal waves, the appropriate timescale is the wave timescale, 
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For grid-generated turbulence, V, - K ;  this means that, from (15) and (16), 
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R = h3(1;, yZ)-1 p 1 (17) 

for an inertia-buoyancy balance to be possible. However, in the experiments, R - 1 ; 
hence, an inertia-buoyancy balance may not be possible. 

Rather than assume an inertia-buoyancy balance, an alternative model balances 
the pressure gradient associated with the horizontal density gradient against the 
turbulent shear stress arising from the mean flow in the mixing region that supplies 
the outflow intrusion. The basic premise of this analysis is that fluid enters the 
mixing region via the entrainment interface and leaves the mixing region via the 
outflow intrusion. The viscous-buoyancy balance is 

which we estimate as 

where U is the velocity scale of the horizontal flow in the mixing region. Here we have 
used L,  as the appropriate horizontal lengthscale because it is the horizontal 
lengthscale of the flow.? 

Using this viscous-buoyancy model, we obtain a second estimate for eout (say 

&All,) &Aut  - N2h5K-lL;' - Nh2R - IEQ,,,. (18) 

One interpretation of (18) is that when R 9 1, a viscous-buoyancy balance permits 
a larger flow than an inertia-buoyancy balance does. I n  this case, the flow rate would 
be set by inertial effects; i.e. an hydraulic control (as in Armi 1986) at  the edge of the 
mixing region would determine the outflow rate. However, when R 4 1, the outflow 
rate is controlled by friction in the mixing region. In  either case, outside the mixing 
region, ut drops rapidly as the turbulence decays (in our experiments, the intrusions 
appeared to be laminar). The outflow intrusions themselves may therefore exhibit an 
inertia-buoyancy balance appropriate to the supply of mixed fluid which is 
controlled by either viscous or inertial effects depending on the value of R. 

In any event, the outflow will induce a vertical velocity wi a t  the entrainment 
interface as indicated in figure 1 ( b ) .  If wi < u,, then the entrainment interface will 
propagate downwards a t  a net speed equal to (u,-wl). If wi = u,, the entrainment 
interface will remain fixed in space and the layer will not deepen. Thus, in contrast 
to the one-dimensional case, the entrainment velocity u, will no longer be equal to 
the rate of mixed-layer deepening, dhldt. Both the entrainment rate and outflow rate 
depend on the mixed-layer depth, entrainment decreasing with increasing depth and 
outflow increasing; thus, as thc layer deepens, the net rate of deepening, (ue-wl), 
will decrease ; eventually, a t  some equilibrium depth, the layer will stop deepening. 

Using ( 1 )  to compute u,, assuming that the equilibrium depth is sufficiently large 
that we can neglect the constant term appearing in the denominator of (i),  and using 
(14) or (18) to compute the induced flow, we can estimate the non-dimensional 
equilibrium depth, re : 
If inertial forces are important, 

v e  - ( L ~ / Y ) ' .  (19) 

t This is shown by noting that the vertical flow that supplies the outflow should be 
approximately uniform along the length of the mixing interface. Therefore, by continuity, the net 
flow towards the outflow boundary (i.e. to the right in figure l b )  must increase linearly with 
increasing distance from the wall a t  the left of figure 1( b) .  Given a constant eddy viscosity (at least 
independent of 5 - see figure 3),  the pressure gradient must be approximately linear in 5, so that 
the lengthscale over which i t  varies must be L,. 
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If turbulent shear stresses control the flow, 

In  both cases, the equilibrium depth is only weakly dependent on the aspect ratio 
( L r n l Y  ). 

The flows in our experiments, like many natural flows (see 96), fall into the class 
of flows for which R - 1.  In  this case, either (or neither) scaIing may be correct, and 
so we must appeal to the experimental results to choose between the two possibilities. 

2.2.3.  Differential deepening of a conjned Jtuid 

If the intrusion is in inertia-buoyancy balance, the front of the outflow from the 
mixing region will travel a t  a speed of approximately Nh, (Manins 1976). If the fluid 
were truly infinite the situation sketched in figure 1 ( b )  could persist indefinitely. 
However, if the fluid is bounded the outflow will eventually reach the far wall; and, 
before it does, all of the internal shear wave with vertical wavelengths greater than 
he, generated by initiation of the outflow, will have reached the far wall, reflected off 
that wall and be travelling back towards the mixing region (Manins 1976). 
Furthermore, the intrusion will be propagating into a region in which the density 
field has already been modified by those shear waves ; consequently, i t  experiences 
progressively more drag (Foster & Saffman 1970) while a t  the same time, the driving 
force is simultaneously reduced as the shear waves reduce the density gradient ahead 
of the intrusion. Thus, on a timescale of order (LINh,), where L is the distance from 
the edge of the mixing region to the far wall, the intrusion will become blocked by 
the rear wall, the driving pressure gradient will weaken, and Qout will decrease. The 
mixed layer will resume deepening, because u,(h), which is not affected by the 
outflow, will then be larger than wi. 

The experimental results suggest that once blocking has taken place, the mixed 
layer eventually deepens in a quasi-one-dimensional fashion, i.e. the layer deepens a t  
the same rate near the grid as in the body of the fluid. This is because blocking 
weakens the density gradient in the fluid between the intrusion and the far wall ; in 
effect, the intrusion forces open the isopycnals bounding it (Foster & Saffman 1970). 
Thus, the density profile ahead of the intrusion becomes more and more like the 
density profile behind the head of the intrusion. If that is the case, the rate a t  which 
fluid is entrained across the interface region is equal to the total gain in volume of 
the mixed layer (which then also includes the blocked region). In  other words, 

giving - Lrn 
dt L, 

-u,-. 
dh - 

The net rate of entrainment, dhldt, is simply the local rate of entrainment multiplied 
by the ratio of the length of the region where mixing is taking place to the total 
length of the reservoir. Using (9), (22) can be integrated to give, for 7 9 1 ,  

Thus, 7 (or h) has exactly the same time dependence for the two-dimensional mixing 
process we are modelling as it has for the one-dimensional process. Additionally, 
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the dependence of h(t) on (L,/L,) is weak; for the experiments, this factor is 
(125/550)' 8 = 0.83. 

2.3. Deepening by grid-stirring in a two-layered jluid 

The case of mixed-layer deepening by grid stirring in a two-layered fluid is very 
similar to that discussed above. Consider first the one-dimensional deepening rate. As 
in the linear case, a lengthscale, say x, can be defined as 

= K B ~ ,  0 

where the mixed-layer buoyancy, 

is constant, and the mixed-layer depth h is as shown in figure2. The natural 
timescale of deepening is 

T d -  - x2K-' = KB;'. (26) 

Thus using (1)-(5), and the dimensionless variables 

7 = tTil (27a)  

and y = hh,', (27b) 

the entrainment law becomes (using the same assumptions made in $2.2.1) : 

_ -  dy 0 . 3 4 ( ~ / h , ) ~  
d r  y + 2 . 2 2 ( h , / ~ ) ~  y 4 .  

- 

Equation (28) can be integrated to give 

0.5y2+0.44 y5 = 0.34 - r+$, (7 (3 (29) 

where # is an integration constant. Because the second term on the left-hand side of 
(29)  is exactly zero until y = 1 ,  i.e. until the turbulent front actually reaches the 
interface, two deepening laws are observed. When y < 1, 

whereas, when y > l(h > ho),  (29)  is satisfied. The integration constant can be 
determined by matching the two solutions a t  y = 1 ,  viz. 

When y + 1, the asymptotic deepening law is 

The effects of horizontal variations in mixing should be similar to those described 
above for linear stratifications. However, because there are now two important 
parameters, ( x / h o )  and (x /L , ) ,  the scaling is more complex and less amenable to 
experimental verification. Consequently, we shall not attempt to analyse the 
equilibration process for this case. However, the long-term, quasi-one-dimensional 
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Lid Buoyancy profile 

Entrainment 

FIGURE 2. Definition sketch for one-dimensional mixed-layer deepening in a two-layer fluid. 

entrainment law, valid once rear-wall blocking of the outflow has taken place, can be 
calculated using the one-dimensional asymptotic deepening law to be 

As in the case of linear stratification, because the deepening rate decreases as the 
mixed-layer depth increases, the dependence of the net deepening rate on the ratio 
of mixed to unmixed areas is weak. 

3. Experimental apparatus and procedure 
The experimental apparatus is shown in figure 3. All the experiments described 

were run in a flume 5.5 m long by 0.5 m wide and 0.6 m deep. At one end of the flume 
we placed a Perspex stirring grid 1.5 m long with 1 cm square bars on 5 ern centres 
(identical in construction to that used by Turner 1968, and others), which spanned 
the width of the flume. The grid was driven by a speed-controlled d.c. motor, through 
a gear reducer and crank-connecting-rod mechanism, a t  frequencies between 1 and 
5 Hz, and a t  strokes between 1 and 5 cm. 

Several inserts were placed in the top of the flume to control the upper boundary 
of the working fluid. The insert containing the grid itself was used in all of the 
experiments, whereas other inserts were removed for various experiments. As shown 
in figure 3, a variable mesh screen was placed a t  the edge of the mixing region to 
prevent the formation of a large eddy that otherwise tended to develop a t  the 
boundary between the mixed and unmixed fluid, and to provide a more gradual 
transition between the region of mixing and the rest of the tank. This screen reduced 
the effective length of the mixing region by approximately 25 cm. 

In the first set of experiments the tank was linearly stratified, using salt as the 
stratifying agent. In  the second set of experiments the tank was stratified into two 
layers. Several four-electrode conductivity probes (described in Stillinger, Helland & 
Van Atta 1983) mounted on stepper-motor-driven profiles were used to monitor the 
evolution of the density field. A microcomputer controlled the traversing of the 
probes and the sampling and storage of their outputs. 

Just  before the start of each experiment, a dye injector attached to the grid was 
used to inject dye into the mixing region. As functions of time, the position of the 



580 T .  Maxworthy and X. G. Monismith 

Conductivity profiler 

P 

a 
3 
LL 
- 

400 cm 

I 

C = O  [ =  150cm [ = 550 cm 

FIGURE 3. Sketch of experimental set-up. 

turbulent interface and the length and thickness of the outflow intrusion resulting 
from the flow of mixed fluid into the interior of the reservoir were then monitored 
visually and photographically. 

The experiments were started with the fluid a t  rest and lasted between 2 and 6 
hours, sufficient time to allow adequate definition of the long-term behaviour of the 
mixed layer. 

4. Experimental results: mixing in a linearly stratified fluid 
4.1. Description of the $ow 

I n  figure 4 we show a sequence of photos of a typical experimental run (Exp 234). 
The first photo was taken just as the grid was set in motion. We see that the initial 
motion of the entrainment interface was not accompanied by any outflow from the 
mixing region. An obvious outflow can be seen in figure 4 ( d ) ,  which was taken a t  
t x 2nN-'. By this time, the small-Ri deepening phase was complete and a constant- 
depth phase was about to begin. Although this is not obvious from the photographic 
sequence (figure 4), the plot of interface depth h versus time t given in figure 5 ( a )  
shows the effect very well. The near coincidence of the start of this phase with the 
start of the outflow was consistent in the majority of our experiments, although the 
existence of a period of nearly constant mixed-layer depth was not always observed 
unambiguously. 

The interaction of reflected shear-wave modes with the intrusion can be seen in 
figure 5 ( b ) ,  which plots the length of the intrusion as a function of time. The 
reduction of the head speed seen a t  approximately t = 150 s is typical of our 
experimental runs; it can be attributed to the passage of the first-mode shear wave 
(phase speed, c1 = N H / n )  through the front of the intrusion. Such a wave would have 
been generated when the outflow started (Manins 1976), and would have travelled to 
the far wall and back, encountering the intrusion on its return trip a t  approximately 
t = 170 s. This wave would then reach the edge of the mixing region a t  t = 210 s and 
communicate to the mixing region the presence of the far wall. As can be seen in 
figure 5 ( a ) ,  the mixed layer began to deepen again a t  approximately t = 210 s. A 
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FIGURE 5 .  (a )  Mixed-layer depth and ( b )  intrusion length :plotted as a function of time for 
Exp 234. 

similar calculation gives a time of 390 s for the return of the second-mode shear wave. 
Careful examination of the mixed-layer-depth-vs.-time curve reveals that before 
t = 390 s, the mixed layer appears to re-equilibrate a t  a depth of 24 cm between the 
arrival of the first- and second-mode waves. After t = 390 s, the mixed-layer depth 
appears to increase monotonically while the intrusion begins to slow down, blocked 
by the back wall. As discussed in $2, once the intrusion has become blocked, the 
mixed layer resumes deepening a t  a rate about 17 Yo slower than would be calculated 
for similar one-dimensional deepening. 

I n  addition to the raw data, figure 5 ( b )  also plots the length of the intrusion as a 
function of time after outflow has begun. Once a shift in the time origin of about 
25 s has been included, figure 5 (b)  shows that the intrusion length increased linearly 
with time, i.e. the head velocity was nearly constant until waves reflected form the 
far wall slowed the intrusion’s motion. 

Figure6 shows an example of the flow observed when y, the scale length, was 
relatively small (Exp 241 ; y = 11 cm). Both the upstream propagation of a sequence 
of internal wave and the velocity profile within the slug (t  = 608 s, 626 s and 671 s) 
can be seen. An important aspect of the velocity profiles, visible in both figure 6 and 
figure 4, is the high-velocity flow situated above the outflow and directed towards the 
mixing region. 

A final set of photos, figure 7, shows the development of the flow a t  a relatively 
large value of y (Exp 226; y = 22.6 cm). Comparing figures 4, 6 and 7, i t  is clear that 
the behaviour of the fluid is remarkably similar over the range of values of y obtained 
in the present experiments. 

Figure 8 plots a sequence of density profiles taken 100 cm from the edge of the grid 
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FIGURE 6. Photographs of the mixing region for Exp 241 (N = 0.38 s-', K = 46.5 cm2 s-', y = 11.0 
cm) showing mixed-layer deepening and intrusion formation. These photos were taken ( a )  0 s, 
(b )  5 s, (c) 10 s, ( d )  47 s, (e) 57 s, ( f )  71 s, ( 9 )  109 s, (h) 148 s, ( i )  235 s, (j) 485 s, (k) 608 s, ( I )  727 s. 
(m) 671 s, (n) 1623 s, (0) 2986 s and ( p )  4786 s after the grid was set in motion. The white lines 
indicate the shape of introduced dye streaks as seen in the original photos from which this figure 
was made. 

throughout the course of Exp 262. These profiles reinforce the description of the flow 
shown in the photos and in the mixed-layer depth and intrusion-length plots. In  
particular the second profile (t = 220 s) shows that the internal waves generated by 
the motion of the intrusion reach the probe long before the intrusion does. The effects 
of blocking can be seen in the distortion of the density field between depths of 6 cm 
and 18 cm. By the time the third profile was taken ( t  = 390 s), the intrusion had 
reached the probe as had shear waves reflected off the back wall, although the 
modification of the profile by intrusions and waves was still quite small. As time 
passed, a region of weaker density gradient developed, centred first on z = 20 em and 
then descending to approximately 24 cm, and finally growing to 28 cm in vertical 
extent by the time the last profile was taken. This region was still stratified after 
3400 s, meaning that the outflow was itself stratified. Gradually, recirculation and 
vertical motions associated with rear-wall blocking acted to homogenize the outflow 
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FIGURE 7. Photographs of the mixing region for Exp 226 ( N  = 0.16 s-’, K = 81.9 em* s-l, y = 
22.6 em) showing mixed-layer deepening and intrusion formation. These photos were taken 
(a )  9 s ,  ( b )  29 s, ( c )  39 s ,  ( d )  80 s, ( e )  132 s ,  (f) 174 s, (9 )  205 s, ( h )  574 s, (i) 847 s and (j) 1108 s after 
the grid was set in motion. 
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(1 1) 2600 s and (12) 3400 s .  The approximate depths of the mixed layer in the mixing region is indi- 
cated by 0 ,  while A indicates the bottom of the outflow in the interior of the tank. 

region. As can be seen from the profiles, this homogenization takes place on quite a 
long timescale. 

An overall picture of the flow can be synthesized from the observations above, and 
is sketched in figure 9. Initially, the interface deepens quite rapidly (figure 9a).  When 
t z 2 ~ N - l ,  collapse starts (figure 9b), generating internal waves. The intrusion length 
begins to increase as mixed fluid enters the intrusion at  the edge of the mixing region. 
After collapse begins, the position of the interface remains constant for a short time, 
as long as the vertical velocity induced by the intrusion is equal to the entrainment 
velocity. This phase is cut short by the reflection of intrusion-generated shear waves 
off the far wall. 

Figure 9 ( c )  shows a sketch of the flow field when the first wave has reflected from 
the back wall but has not yet met the intrusion. A brief while later, the wave has 
reached the edge of the mixing region (figure 9d) .  The interface then resumes its 
downwards migration, albeit slowly, since the entrainment interface must now 
supply fluid not only to lengthen the intrusion, but also to separate isopycnals 
upstream of the visible head of the intrusion. Aside from the arrested progression of 
the intrusion head, this separation of upstream isopycnals is the most evident 
manifestation of rear-wall blocking. These latter processes become even more 
obvious when the stage shown in figure 9(e )  is reached. Here the slug has almost 
reached the end of the tank; all of the entrained field is used to fatten the slug and 
to push down its lower interface. The fluid that enters the mixing region from below 
moves along isopycnal surfaces and displays the characteristics of a withdrawal layer 
in the classical sense (Imberger et al. 1976), with the mixing interface acting as a 
sink. 
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FIGURE 9. Sketches of the observed flow : (a )  initially local mixed-layer -2epening ; ( b )  the 
development of the outflow and shear-wave generation ; (c) the reflection of shear waves and the 
development of recirculation near the grid; ( d )  blocking of the outflow intrusion by reflected shear 
waves ; ( e )  the final state of quasi-one-dimensional mixed-layer deepening. 

In all our experiments, the chosen forcing method results in a strong recirculation 
zone close to the free edge of the grid. This flow consists of a sink withdrawing fluid 
from the region surrounding the grid, and from both above and within the dye- 
marked intrusion. This fluid is then re-injected into the intrusion. This strong reverse 
flow within the intrusion appeared to be independent of the position of the lower 
interface. 

4.2. Comparison of experimental observations with theory 

We ran 13 experiments of the type discussed above. Table 1 gives a complete 
tabulation of the experimental parameters. In  order to cover the complete range of 
the observed behaviour, we have plotted two additional sets of mixed-layer depth 
h vs. t and intrusion length I, us. t data in figures 10 and 11. From these and similar 
curves, we have derived a set of parameters that  characterize each experiment, which 
are also listed in table 1.  The most useful of these derived quantities are: (i) the 
equilibrium depth of the interface ( T ~ )  found that between the initial formation of the 
interface and the interaction of the intrusion with the return wave; and, (ii) the 
asymptotic (quasi-one-dimensional) rate of mixed-layer deepening as described by a 
curve of the form: 

For all of the experiments reported in table 1, the coefficient of correlation associated 
with fitting (34) to the observed data was larger than 0.08, and in some cases was as 

7' = aT+b. (34) 
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TABLE 1. Experimental data and results : linear stratifications 
~ ~ _ _ _ _ _ _  
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high as 0.999 (i.e. i ) ,  indicating that the experimental data do exhibit the time 
dependence predicted by (23). 

The observed values of ve are plotted in figure 12, as a function of ( y / L , ) .  We have 
also drawn the line 
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FIGURE 11. (a )  Mixed-layer depth and ( b )  intrusion length as functions of time for Exp 277. 
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FIGURE 12. Non-dimensional equilibrium depth ve,  as a function of (y /L , )  for experiments with 

linear stratifications. 

the relation appropriate to a viscous flow, on the plot. The fit is generally quite good, 
whereas it is clear that a curve of the form 

i.e. the relation appropriate to an inertial flow, would not match the decrease in re 
with increase in (y/L,) as well as does the viscous curve. Thus we conclude that the 
experiments favour the viscous-buoyancy scaling over the inertia-buoyancy scaling. 
Some of the scatter in the experimental points may be because the initial 
stratifications were never perfectly linear. In some cases, the mixed layer appeared 
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to stop deepening a t  depths near the predicted equilibrium depth, where the local 
density gradient was somewhat stronger than the average gradient. In  other cases, 
regions of weaker gradient allowed the mixed layer to deepen past the equilibrium 
depth calculated using an average value of N .  

We can express the parametrized outflow rate in terms of an 'eddy' viscosity vt 
rather than in terms of K :  

QAut = AN2h5v;l L;'. (36) 

If we now set vt = 4qZ, = 0.32K (Hopfinger & Linden 1982), (31) allows us to 
determine that A = 0.08. This small value of A is typical of viscous-buoyancy flows 
such as cavity convection flows (e.g. Imberger 1974). 

Results for the constant a in (34) are also in general agreement with the values 
predicted theoretically. The deduced values of a show no systematic variation with 
y ; again, variations in a must be attributable to vertical variations in N .  Additionally, 
since the fitted curve involves a calculation of y8, any errors in measuring S and f 
become magnified in the calculation, because y8 is proportional to S6 and f 4.  Using 
all of the experimental results, we calculate an average value of a = 0.98, in excellent 
agreement with the predicted (using L J L ,  = 0.23) value of 0.95. 

5.  Mixing in a two-layer fluid 
5.1. Initial conditions 

Simple dimensional analysis suggests that the case of a two-layer stratification is 
inherently more complicated than that of a linear stratification : assuming that the 
virtual origin of the grid coincides with the free surface, three parameters characterize 
the flow when the stratification is linear : the scale length y, the length of the mixing 
region, and the total length of the tank. Of these only one, y, could be effectively 
varied in the present experiments. When the stratification is two-layered, there are 
instead five parameters : the scale length x, the initial mixed-layer depth, the initial 
interface thickness, and the two lengths mentioned above. In  our two-layered 
experiments three of these could be varied. Because of these two extra lengthscales, 
our two-layered experiments showed far more variability of both deepening rates and 
outflow behaviour than did our experiments with linear stratifications. 

5.2. General description 
Overall, flows driven by mixing in the two-layer experiments were similar to those 
observed when the stratification was initially linear. Again, there was an initial phase 
of rapid, localized deepening, followed by a second phase of equilibration and 
outflow, and a final phase of nearly uniform deepening. 

The principal difference between the two types of experiments is the structure of 
the shear-wave modes, which depends on the density profile. The most striking 
manifestation of this difference was the generation of second-mode solitary waves, 
i.e. interfacial bulges (see Maxworthy 1980), by the outflow intrusion in the two- 
layered experiments. In  several experiments (284, 287, 302 and 305) these waves 
separated from the intrusion, were reflected off the back wall, and travelled back 
towards the mixing region. When these waves made contact with the front of the 
intrusion, the intrusion stopped moving. In  one case (302) the nose of the intrusion 
was split in two by the reflected waves! Figure 13(a, b )  shows such a wave 
approaching the mixing region from the left. I n  figure 13(a) the crest of the wave, 
which appears as a bulge in the outflow intrusion, is located a t  the far right of the 
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FIGURE 13. Reflected shear waves approaching the mixing region for Exp 302. 

FIGURE 14. The quasi-steady velocity profile a t  the edge of the mixing region for Exp 304. 

photo. In  figure 1 3 ( b ) ,  taken approximately 20 s after figure 13(a),  the crest of the 
wave is a t  x = 30 cm, although the wave is losing its shape. Note that the thickness 
of the outflow region increases by about 3 cm between figure 13 (a)  and 13 ( b )  when 
the wave arrives. These are large-amplitude forms of the shear waves seen in the 
linear experiments, playing exactly the same role : they signal the presence of the far 
wall to the mixing region. 

The steady-state velocity profile in figure 14 shows two circulation cells. The upper 
cell consists of inflow into the upper part of the mixed region and some of the outflow 
from the lower part of the mixed region. The lower cell is made up of outflow from 
the mixed region and some stress-driven flow in the interface and the lower layer ; 
these are balanced by a sink flow towards the mixing region in the lower part of the 
lower layer. In contrast, in the linearly stratified experiments the recirculating 
entrainment flow was confined to a narrow layer below the entrainment interface. 
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FIGURE 15. Mixed-layer depth as a function of time for (a) Exp 302, 
(b) Exp 304 and (c) Exp 305. 

Figure 15 shows samples of mixed-layer depths plotted as functions of time for 
three experiments with two-layered stratifications. Again, deepening takes place in 
three phases : initial rapid deepening, equilibration and asymptotic, quasi-one- 
dimensional deepening. 

As in experiments with linear stratifications, the equilibration process did not 
quite unfold as assumed in theory : several equilibrium depths were observed and the 
mixed-layer dcpth varied somewhat across the mixing region. For example, in 
Exp 302, the mixed layer first stops deepening for approximately 30 s when h = 
15.5 cm (7 = l.S), and then resumes deepening until it reaches a new equilibrium a t  
h = 18 em (7 = 2.1); this depth is maintained for a further 200 s, until the outflow 
intrusion has become blocked by the rear wall. The occurrence of multiple 
equilibrium depths is probably due to partial blocking of the outflow, i.e. the 
interaction of the intrusion with the first (fastest) shear waves to be reflected off the 
far wall. 

Several of the plots of outflow length as functions of time shown in figure 16 do not 
exhibit any of the simple power-law dependencies measured in intrusion experiments 
(e.g. Maxworthy 1972, 1983). Curves for Exps 303 and 304 both show the intrusion 
slowing down and then speeding up. As before, this behaviour can be attributed to 
the interaction of the intrusion with reflected shear waves. 

Figure 17 shows the evolution of the density field as exemplified by profiles 
measured at two stations during Exp 306. These profiles show how a mixed layer 
forms and initially deepens under the grid (profile 2) while the interior of the tank 
remains unaffected. Next, even before the intrusion arrives a t  the interior measuring 
station (profile 3), the interface thickens, presumably because of rear-wall blocking 
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FIGURE 16. Intrusion length as a function of time for (a )  Exp 302, 
( b )  Exp 303 and (c) Exp 304. 

of the intrusion. Once the intrusion has reached the measuring station, the interface 
thickens with a concomitant weakening of the interfacial density gradient. Contrary 
to the homogeneity assumed in calculating the outflow rate in $3, the outflow is still 
stratified at this point. In the final deepening phase, the interface continues to 
thicken and to homogenize. The upper interface seen in figure 17 is an unavoidable 
consequence of the experimental geometry. 

An examination of the density profiles measured in the mixing region shows that 
the interface thickness was quite variable ; this is consistent with many observations 
of the entrainment process (see Crapper & Linden 1974 or Fernando & Long 1985) 
that show the interface as alternately sharpened (scoured) and diffused by mixing 
events. However, as seen in those profiles taken outside the mixing region, the 
interface, which corresponds to the edge of the dyed region, is virtually non-existent 
in the sense that no step can be seen. This implies that an important difference exists 
between true one-dimensional deepening by stirring and the quasi-one-dimensional 
deepening process we observe : the quasi-one-dimensional deepening process does not 
result in interfacial sharpening. 

5.3. Comparison of experiment and theory 

Table 2 presents a summary of the experimental conditions for the two-layered 
experiments. For each experiment, the interface thickness was derived from the 
initial profile by determining the elevations a t  which a line colinear with the slope of 
the density profile in the middle of the interface intersects the vertical lines colinear 
with the density profile in the upper and lower layers. 

Because we have not presented any theory for the equilibration process in a two- 
layered fluid, the experimental results for two-layer stratifications are summarized 
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Exp No. 
(date) 

284 
287 
302 
303 
304 
305 
306 

g' ho K 4 X a a k 
em s-2 em emz s-l cm cm predicted observed observed 

7.3 5.0 46.5 3.1 7.5 0.92 1.85 0.20 
6.2 10.0 47.4 4.3 5.8 0.024 0.020 0.20 
6.2 9.5 67.1 1.5 8.6 0.096 0.042 0.20 
3.3 9.0 38.5 2.0 6.9 0.074 0.043 0.20 

0.13 7.3 12.0 38.2 4.0 4.3 
0.23 2.3 11.7 66.8 2.4 13.6 

4.5 11.7 67.1 3.1 9.8 0.14 

- - 
- - 

- - 

TABLE 2. Experimental data and results : two-layer experiments 

8, = initial interface thickness ; k = observed exponent in asymptotic one-dimensional deepening 
law i.e. h - P. 
only in terms of (i) the exponent k in the asymptotic deepening law h - t k ;  and, (ii) 
when k = 0.2, the constant of proportionality (by analogy with (34)). 

Figure 15 illustrates the range of values found for the exponent k in the asymptotic 
deepening law (i.e. h - t k ) .  The predicted form of this law, k = 0.2, is only seen in 
Exp 302; k = 0.13 in Exp 304; and k = 0.25 in Exp 305. These variations in k have 
two sources : first, the theory assumes that x < h (7 > 1 )  ; second, the theory assumes 
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that the interface has zero thickness. In Exp 304, although x was less than the initial 
mixed-layer depth, it was only marginally larger than the interface thickness. Thus, 
the mixed layer was actually deepening into a linear stratification. This conclusion 
is supported by the fact that the observed deepening is consistent with that expected 
of a linearly stratified fluid. 

In Exp 305, x was larger than the initial mixed-layer depth ; hence, Ri = ( h / x ) ,  
was small enough for the deepening rate to approach that expected of an 
homogeneous fluid. In  terms of the turbulent-kinetic-energy budget expressed by (l), 
the ‘spin-up’ of fluid (Denton & Wood 1982), represented by the constant in the 
denominator of (l) ,  required an amount of turbulent kinetic energy comparable with 
that expended by working against gravity to entrain heavier fluid (the RiZ term). 

Table 2 lists the predicted and observed asymptotic deepening rates only for those 
experiments in which k = 0.2. The agreement between theory and observations is not 
nearly as good as that for experiments with linear stratifications. While there is less 
agreement between the individual predicted and observed values of a (where for two- 
layer stratifications, r5 = ar + b ) ,  the average ratio of predicted to observed deepening 
rates is quite close to 1 (0.97), indicating a reasonable agreement between theory and 
observation. From the observations summarized in table 2, we can conclude that the 
theory presented in $2.3 is most accurate when the interface is thin and when the 
scale depth x is not larger than the initial mixed-layer depth. 

6. Discussion 
In this section, we shall apply the results of our study (most notably (36)) to 

examine the effects of spatially variable mixing on mixed-layer deepening for the two 
‘real-life’ flows described in 9 1. The purpose of this exercise is to see whether or not 
mixed-layer equilibration, as we observe it in the laboratory, is likely to occur in 
nature. 

To apply our results to natural mixing processes, it is necessary to specify 
appropriate entrainment laws. As discussed in Sherman et al. (1978), and Imberger 
(1985), when boundary-generated turbulence (stirring) drives mixed-layer deepening, 

u, = C,  u* Rip‘, 

u, = C,  u* Ri-i, 

(37) 

whereas when deepening is driven by interfacial shear, 

(38) 

where Ri = g’h,/u2,. The constants C ,  and C,  are approximately 0.1 (e.g. Kranenburg 
1985) and 0.3 (Spigel, Imberger & Rayner 1986). We may assume that vt = O.lhu, 
(Fischer et al. 1979). Thus, for linearly stratified fluids, 

0.2C, u* 9 
he = (A) = 0.8X;L&, 

in the first case; the scale depth X is defined by the relation 

In the second case, 

U x=* 
N ’  

he = l.OX%Lk. 

(39) 



Differential mixing in a strati,ed f luid 595 

For tidal flows with negligible shear, u* = C i U ,  so that (39) becomes 

Thus, ( h e / H )  = 1, i.e. a front will form when UINH N (C,  Lm/H)-i ,  rather than when 
U / N H  = a constant, as derived by Maxworthy (1984), unless L ,  - H .  Here L,  must 
be the scale over which U varies significantly. Simpson et al. (1982) present 
observations of mixing produced by a submerged island; in that case, the mixing is 
very nearly discontinuous, as in the present set of experiments. Assuming C, = lop2, 
L,  = 100 km, H = 100 m, we find (h,/H) = 1 (for u* = a constant) when U / N H  = 
0.6, a value somewhat smaller than that (2.0) derived by Maxworthy (1984) in 
analysing the Simpson & Hunter (1974) data. This suggests that unsteadiness in the 
mixing rate due to tidal variations in u* is important because the time required to 
reach equilibrium is longer than the duration of mixing. We can write an expression 
for dhldt, including the effects of outflow, in terms of 7 = h / H ,  and T = N t ;  viz: 

Integration of (43) shows that the actual time taken to reach equilibrium is infinite. 
However, the time r8 required to reach any particular value of (717,) = 6 is 

r8 = 0.4 - ln((1 +a3) ( 1  -63)-1}. (3 (44) 

For example, for 6 = 0.99, r6 = 1.7(Lm/X). Using numbers appropriate to a tidal 
front, we find that this corresponds to a time of 16 days, which is significantly longer 
than the tidal period. Thus, the equilibrium depth is also a function of the tidal 
period (non-dimensionalized by N )  as well as the r.m.s. tidal velocity. 

The case of differential mixed-layer deepening in lakes is more difficult to analyse 
than that of tidal mixing because of the complex structure of wind-sheltering 
patterns which give rise to differential mixing (Imberger & Parker 1985). To proceed, 
i t  is first necessary to know which entrainment law, (37) or (38), is appropriate. 
According to Spigel & Imberger (1980), this choice of entrainment laws depends on 
the value of the Wedderburn number, 

h 
L 

W = Ri-,  

where Ri is defined as above and L is the length of the basin in the direction of the 
wind. If W > 1,  (37) is valid, whereas if W < 1, (38) is valid. 

For an initially linear stratification, W = 0 (Monismith 1986), and the second 
relation is valid. However, as the layer deepens, W increases, so that when 

h > 2X2L = hshear, 

the mixing process switches over from one dominated by shear to one dominated by 
stirring (assuming that equilibration takes place before the shear is cut off by 
pressure effects ~ see Spigel et al. 1986). Because of this, the mixed-layer response 
may change with time, even with a constant wind stress. The equilibrium depth will 
be given by (41) if the predicted value of he is less than hshear. On the other hand, if 
the predicted value of he is greater than hshear, the mixed layer would first deepen to 
h = hshear, whence the deepening rate would start to decrease while the outflow rate 
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remained constant. The mixed-layer depth would then decrease towards the value 
given by (40) (which is generally less than that given by (41)). However, if h drops 
below h,,,,,, the mixing rate would increase ; equilibration would therefore appear to 
take place a t  a depth near hshear. 

To put this in perspective, we consider typical values of the relevant parameters 
for the case of a surface layer of a reservoir (e.g. Imberger & Parker 1985). We set 
u* = 5 x s-l and L,  = L = 1 km, giving he = 5.4 m if (41) is 
valid, he = 2.4 m if (40) is valid, and h,,,,, = 4.7 m. Thus, according to the arguments 
given in the preceding paragraph, we would predict equilibration at h - 5 m. Again, 
since the wind may not blow long enough for the mixed layer to reach its equilibrium, 
and because shear-driven deepening only persists for a time less than a of the 
appropriate internal seiche period (Imberger 1985), this estimate must be to some 
degree an overprediction. Indeed, the observations presented in lmberger & Parker 
(1985) show horizontal variations in mixed-layer depth of 2 to 3 m rather than 5 m 
as suggested above. 

It should be pointed out that  the experimental and theoretical results are sensitive 
to the spatial decay of grid turbulence. Furthermore, two potentially important 
effects have been ignored in the present study : the effect of rotation on the observed 
flows, and, as pointed out above, the likely effects of temporal non-uniformity of the 
mixing process. 

Rotation is likely to be crucial in determining the motion of the outflow from the 
mixed region, since both the inflow and outflow are set up by waves characterized by 
small Rossby radii, L,  = C/ f ,  where C is the wave speed and f is the Coriolis 
parameter. For the flows discussed above, L, typically will be between 100 and 
1000 m. Where the outflow takes place next to a solid boundary, intense ‘Kelvin ’ 
currents (currents in which the cross-stream Coriolis force is balanced by a cross- 
stream pressure gradient supported by the wall) can be formed. In  the case of tidal 
mixing, L, must set the offshore width of the outflow and inflow. Evidence for this 
behaviour comes from intrusion experiments reported by Maxworthy ( 1982) and 
from boundary-mixing experiments described by Ivey (1987). For the case of an 
enclosed basin, such as a reservoir, the spatial structure of the inflow-outflow 
currents would be quite complex, as demonstrated by the withdrawal experiments 
discussed in Monismith & Maxworthy (1987). Based on Griffiths & Linden’s (1982) 
and Ivey’s (1987) experiments, it  should be expected that the outflow intrusion 
would become rotationally unstable, leading to the formation of large vortices with 
concomitant offshore transport of mixed fluid. It is unclear whether rotation 
influences the amount of fluid leaving the mixing region since scaling arguments 
similar to those given in $ 2  show that Coriolis forces are of the same magnitude as 
frictional forces. 

In  the case of tidal mixing, the tidal variation of the flow velocity appears to be 
an important factor in determining the location of‘ the front. As the current 
accelerates, the mixed layer deepens; if it  fails to surface (or reach its equilibrium 
depth) before the current starts to  decelerate, it  tends to become shallower, i.e. 
retreat, as soon as the outflow exceeds the entrainment flow. Temporal non- 
uniformities in the intensity of mixing should also result in the formation of‘ quite 
complex outflow structures due to the interaction of shear waves generated by 
changes in outflow, with the outflow itself. The lake example presented also suggests 
that unsteadiness of the mixing rate is important. Clearly, the unsteady case 
warrants further study. 

ms-l, N = 3 x 
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7. Conclusions 
Both experimentation and theory make clear that differential deepening takes 

place in three phases : an initial phase of one-dimensional deepening ; an equilibrium 
phase wherein the mixed-layer depth remains constant until the outflow from the 
mixed layer is blocked by the back wall ; and a final phase in which the mixed layer 
no longer deepens differentially, but instead deepens a t  a rate that is the product of 
the one-dimensional entrainment’ velocity in the mixing region and the fraction of 
the total length over which active mixing is taking place. Excepting the initial 
collapse process that produces the outflow, the outflow rate appears to be set by a 
balance of turbulent shear stresses and the pressure gradient associated with the 
density gradient created by differential mixing. Finally, the general effects of 
differential mixing, as just outlined, are found when the fluid is stratified either 
linearly or as two homogeneous layers. 
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